Понятия со словосочетанием «число пи»
Законопроект о числе пи — законопроект № 246 от 1897 года, рассматривавшийся на заседании Генеральной Ассамблеи Индианы.
Связанные понятия
Теорема котангенсов — тригонометрическая теорема, связывающая радиус вписанной окружности треугольника с длиной его сторон. Теорему котангенсов удобно использовать при решении треугольника по трём сторонам.
Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень которого тоже целый.
Репди́джиты (англ. repdigit, от repeated digit — повторённая цифра), также репдигиты, однообра́зные чи́сла — натуральные числа, все цифры записи которых одинаковые. Обычно подразумевается запись в десятичной системе счисления.
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Гуголплекс (от англ. googolplex) — число, равное 10гугол (десяти в степени гугол), то есть 1010100. В десятичной записи число можно представить как одна единица и гугол нулей после неё.
Метод площадей — метод решения геометрических тождеств путём подсчёта площадей фигур разными способами.
При́знак Паска́ля — математический метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости».
Кру́глыми чи́слами относительно некоторой позиционной системы счисления называют степени её основания. В этой системе счисления такие числа записываются как единица с последующими нулями. Количество нулей справа от единицы равно показателю степени основания.
Подробнее: Круглые числа
Гипотенуза (греч. ὑποτείνουσα, натянутая) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.
Теорема Кейси или Кэзи — теорема в евклидовой геометрии, обобщающая неравенство Птолемея. Названа по имени ирландского математика Джона Кейси.
Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Описанное коническое сечение или описанная коника для треугольника — это коническое сечение, проходящее через три вершины треугольника, а вписанное коническое сечение или вписанная коника — это вписанное в треугольник коническое сечение, т.е. касающееся сторон треугольника (возможно, не самих сторон, а их продолжений) Пусть даны три различные точки A,B,C, не лежащие на одной прямой, и пусть ΔABC — треугольник, имеющий эти точки в качестве вершин. Обычно считается, что буква, например A, обозначает...
Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Теорема о разностях — теорема, связывающая понятия производной и прямой конечной разности высших порядков для степенной функции натурального показателя степени.
Псевдопростое число — натуральное число, обладающее некоторыми свойствами простых чисел, являясь тем не менее составным. В зависимости от рассматриваемых свойств существует несколько различных типов псевдопростых чисел.
Пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.
Точка Фейнмана — последовательность из шести девяток, начинающаяся с 762-й цифры десятичной записи числа пи. Носит имя американского физика Ричарда Фейнмана (1918—1988), который сказал на одной лекции, что хотел бы запомнить цифры числа пи до этой позиции, чтобы заканчивать рассказ кому-либо словами «девять, девять, девять, девять, девять, девять и так далее», как бы предполагая, что значение π рационально.
Мирова́я ли́ния в теории относительности — кривая в пространстве-времени, описывающая движение тела (рассматриваемого как материальная точка), геометрическое место всех событий существования тела. Иногда мировой линией называют вообще любую непрерывную линию в пространстве-времени.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Подробнее: Гиперкомплексное число
Теорема тангенсов — теорема, связывающая между собой тангенсы двух углов треугольника и длины сторон, противоположные этим углам.
Алгебраическая сумма — это выражение, которое можно представить в виде суммы положительных и отрицательных чисел.
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Табли́ца умноже́ния, она же табли́ца Пифаго́ра — таблица, где строки и столбцы озаглавлены множителями, а в ячейках таблицы находится их произведение. Используется для обучения школьников умножению.
Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.
Злое число — целое неотрицательное число с чётным весом Хэмминга при записи в двоичной системе счисления (то есть с чётным числом единиц в двоичной записи).
Числа харшад, или числа Нивена, — натуральные числа, делящиеся нацело на сумму своих цифр.
Фигу́рные чи́сла — общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Предположительно, с понятием фигурного числа связано выражение «возвести число в квадрат или в куб». В теории чисел и комбинаторике фигурные числа связаны с многими другими классами целых чисел — биномиальными коэффициентами, совершенными числами, числами Мерсенна, Ферма, Фибоначчи, Люка и другими.
Одноугольник (генагон или моногон) — фигура в геометрии представляет собой многоугольник с одним краем и одной вершиной. Обозначается символом {1}. Имеет только одну сторону и только один внутренний угол.
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Ниже приведён
список интегралов (первообразных функций) от обратных тригонометрических функций.
Триморфное число — натуральное число, десятичная запись куба которого оканчивается цифрами самого этого числа.
Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, который внёс значительный вклад в геометрию и другие области математики.
Теорема Лестера — утверждение в геометрии треугольника, согласно которому в любом разностороннем треугольнике две точки Ферма, центр девяти точек и центр описанной окружности лежат на одной окружности (окружности Лестера). Названа именем канадского математика Джун Лестер (June Lester).
Числовой луч — графическое представление неотрицательных чисел в виде луча. На луче, как правило, отмечены натуральные числа. Расстояние между соседними точками равно единице измерения (единичный отрезок), которая задаётся произвольно. Началу луча ставится в соответствие число 0. Луч, как правило ориентирован вправо. Числовой луч является частью числовой оси.
Лемма о трезубце или теорема трилистника, или лемма Мансиона (жарг. лемма о куриной лапке) — теорема в геометрии треугольника.
Магический треугольник (также известный под именем периметровый магический треугольник) это такая расстановка целых чисел от 1 до n на сторонах треугольника с одинаковым количеством чисел на каждой стороне (называемым порядком данного треугольника), что сумма чисел на каждой стороне постоянна и называется магической суммой треугольника. В отличии от магических квадратов, существуют разные магические суммы для магических треугольников одного и того же порядка. У любого магического треугольника есть...